Covariación Media Móvil Estacionaria


2.1 Modelos de media móvil (modelos MA) Modelos de series temporales conocidos como modelos ARIMA pueden incluir términos autorregresivos y / o términos de media móvil. En la semana 1, aprendimos un término autorregresivo en un modelo de series de tiempo para la variable x t es un valor retrasado de x t. Por ejemplo, un término autorregresivo de retardo 1 es x t-1 (multiplicado por un coeficiente). Esta lección define los términos del promedio móvil. Un término medio móvil en un modelo de serie temporal es un error pasado (multiplicado por un coeficiente). Dejamos (wt desbordamiento N (0, sigma2w)), lo que significa que los w t son idéntica, independientemente distribuidos, cada uno con una distribución normal que tiene la media 0 y la misma varianza. El modelo de media móvil de primer orden, denotado por MA (1) es (xt mu wt theta1w) El modelo de media móvil de segundo orden, denotado por MA (2) es (xt mu wt theta1w theta2w) , Denotado por MA (q) es (xt mu wt theta1w theta2w puntos thetaqw) Nota. Muchos libros de texto y programas de software definen el modelo con signos negativos antes de los términos. Esto no cambia las propiedades teóricas generales del modelo, aunque sí cambia los signos algebraicos de los valores estimados de los coeficientes y los términos (no cuadrados) en las fórmulas para las ACF y las varianzas. Usted necesita comprobar su software para verificar si los signos negativos o positivos se han utilizado con el fin de escribir correctamente el modelo estimado. R utiliza signos positivos en su modelo subyacente, como lo hacemos aquí. Propiedades teóricas de una serie temporal con un modelo MA (1) Tenga en cuenta que el único valor distinto de cero en el ACF teórico es para el retardo 1. Todas las demás autocorrelaciones son 0. Por lo tanto, una ACF de muestra con una autocorrelación significativa sólo con el retardo 1 es un indicador de un posible modelo MA (1). Para los estudiantes interesados, las pruebas de estas propiedades son un apéndice a este folleto. Ejemplo 1 Supongamos que un modelo MA (1) es x t 10 w t .7 w t-1. Donde (wt overset N (0,1)). Así, el coeficiente 1 0,7. El ACF teórico se da por un diagrama de esta ACF sigue. La gráfica que se muestra es la ACF teórica para una MA (1) con 1 0,7. En la práctica, una muestra no suele proporcionar un patrón tan claro. Utilizando R, simulamos n 100 valores de muestra utilizando el modelo x t 10 w t .7 w t-1 donde w t iid N (0,1). Para esta simulación, sigue un diagrama de series de tiempo de los datos de la muestra. No podemos decir mucho de esta trama. A continuación se muestra el ACF de muestra para los datos simulados. Observamos un pico en el retraso 1 seguido por valores generalmente no significativos para los retrasos de 1. Obsérvese que la muestra ACF no coincide con el patrón teórico del MA subyacente (1), que es que todas las autocorrelaciones para los retrasos de 1 serán 0.Una muestra diferente tendría una ACF de muestra ligeramente diferente mostrada abajo, pero probablemente tendría las mismas características amplias. Propiedades Terapéuticas de una Serie de Tiempo con un Modelo MA (2) Para el modelo MA (2), las propiedades teóricas son las siguientes: Obsérvese que los únicos valores distintos de cero en la ACF teórica son para los retornos 1 y 2. Las autocorrelaciones para retardos mayores son 0 . Por lo tanto, una muestra de ACF con autocorrelaciones significativas en los intervalos 1 y 2, pero autocorrelaciones no significativas para retardos mayores, indica un posible modelo MA (2). Iid N (0,1). Los coeficientes son 1 0,5 y 2 0,3. Dado que se trata de una MA (2), la ACF teórica tendrá valores distintos de cero sólo en los retornos 1 y 2. Los valores de las dos autocorrelaciones distintas de cero son: Un gráfico del ACF teórico sigue. Como casi siempre es el caso, los datos de la muestra no se comportarán tan perfectamente como la teoría. Se simularon 150 valores de muestra para el modelo x t 10 w t .5 w t-1 .3 w t-2. Donde w t iid N (0,1). A continuación se muestra el gráfico de la serie de tiempo de los datos. Al igual que con el gráfico de la serie de tiempo para los datos de la muestra MA (1), no se puede decir mucho de ella. A continuación se muestra el ACF de muestra para los datos simulados. El patrón es típico para situaciones donde un modelo MA (2) puede ser útil. Hay dos picos estadísticamente significativos en los intervalos 1 y 2, seguidos de valores no significativos para otros desfases. Tenga en cuenta que debido al error de muestreo, la muestra ACF no coincide exactamente con el patrón teórico. ACF para modelos MA (q) Una propiedad de los modelos MA (q) en general es que hay autocorrelaciones no nulas para los primeros q retrasos y autocorrelaciones 0 para todos los retrasos gt q. No unicidad de la conexión entre los valores de 1 y (rho1) en MA (1) Modelo. En el modelo MA (1), para cualquier valor de 1. El 1/1 recíproco da el mismo valor para. Por ejemplo, use 0.5 para 1. Y luego utilice 1 / (0,5) 2 para 1. Youll get (rho1) 0.4 en ambos casos. Para satisfacer una restricción teórica llamada invertibilidad. Limitamos los modelos MA (1) a tener valores con valor absoluto menor que 1. En el ejemplo dado, 1 0,5 será un valor de parámetro permisible, mientras que 1 1 / 0,5 2 no. Invertibilidad de los modelos MA Se dice que un modelo MA es invertible si es algebraicamente equivalente a un modelo de orden infinito convergente. Al converger, queremos decir que los coeficientes de AR disminuyen a 0 a medida que retrocedemos en el tiempo. Invertibilidad es una restricción programada en el software de la serie de tiempo usado para estimar los coeficientes de modelos con términos de MA. No es algo que buscamos en el análisis de datos. En el apéndice se proporciona información adicional sobre la restricción de la invertibilidad para los modelos MA (1). Nota de Teoría Avanzada. Para un modelo MA (q) con un ACF especificado, sólo hay un modelo invertible. La condición necesaria para la invertibilidad es que los coeficientes tienen valores tales que la ecuación 1- 1 y-. - q y q 0 tiene soluciones para y que caen fuera del círculo unitario. Código R para los Ejemplos En el Ejemplo 1, se representó la ACF teórica del modelo x $ _ {t} $ w $ _ {t} $. 7w t-1. Y luego se simularon 150 valores de este modelo y se representaron las series de tiempo de muestra y la muestra ACF para los datos simulados. Los comandos R usados ​​para trazar el ACF teórico fueron: acfma1ARMAacf (mac (0.7), lag. max10) 10 retardos de ACF para MA (1) con theta1 0.7 lags0: 10 crea una variable llamada lags que va de 0 a 10. plot Abline (h0) añade un eje horizontal al diagrama El primer comando determina el ACF y lo almacena en un objeto (a0) Llamado acfma1 (nuestra elección de nombre). El comando plot (el 3er comando) traza retrasos en comparación con los valores ACF para los retornos 1 a 10. El parámetro ylab etiqueta el eje y y el parámetro principal coloca un título en la gráfica. Para ver los valores numéricos de la ACF simplemente utilice el comando acfma1. La simulación y las parcelas se realizaron con los siguientes comandos. Xcarzim. sim (n150, lista (mac (0.7))) Simula n 150 valores de MA (1) xxc10 agrega 10 para hacer la media 10. La simulación predeterminada significa 0. plot (x, typeb, mainSimulated MA (1) data) (X, xlimc (1,10), mainACF para datos de muestra simulados) En el Ejemplo 2, se representó el ACF teórico del modelo xt 10 wt. 5 w t-1 .3 w t-2. Y luego se simularon 150 valores de este modelo y se representaron las series de tiempo de muestra y la muestra ACF para los datos simulados. Los comandos R utilizados fueron acfma2ARMAacf (mac (0.5.0.3), lag. max10) acfma2 lags0: 10 trama (lags, acfma2, xlimc (1,10), ylabr, typeh, ACF principal para MA (2) con theta1 0,5, (X, typeb, principal serie MA simulado) acf (x, xlimc (1,10), x2) (1) Para los estudiantes interesados, aquí hay pruebas de las propiedades teóricas del modelo MA (1). Cuando x 1, la expresión anterior 1 w 2. Para cualquier h 2, la expresión anterior 0 (x) La razón es que, por definición de independencia del peso. E (w k w j) 0 para cualquier k j. Además, debido a que w t tiene una media 0, E (w j w j) E (w j 2) w 2. Para una serie de tiempo, aplique este resultado para obtener la ACF dada anteriormente. Un modelo inversible MA es uno que puede ser escrito como un modelo de orden infinito AR que converge para que los coeficientes AR convergen a 0 a medida que avanzamos infinitamente en el tiempo. Bien demostrar invertibilidad para el modelo MA (1). A continuación, sustituimos la relación (2) por wt-1 en la ecuación (1) (3) (zt wt theta1 (z-theta1w) wt theta1z - theta2w) En el momento t-2. La ecuación (2) es entonces sustituimos la relación (4) por w t-2 en la ecuación (3) (zt wt theta1 z - theta21w wt theta1z - theta21 (z - theta1w) wt theta1z - theta12z theta31w) Si continuáramos Sin embargo, si 1 1, los coeficientes que multiplican los retrasos de z aumentarán (infinitamente) en tamaño a medida que retrocedemos hacia atrás hora. Para evitar esto, necesitamos 1 lt1. Esta es la condición para un modelo de MA (1) invertible. Infinite Order MA model En la semana 3, veamos bien que un modelo AR (1) puede convertirse en un modelo de orden infinito MA: (xt - mu wt phi1w phi21w puntos phik1 w dots sum phij1w) Esta suma de términos de ruido blanco pasado es conocida Como la representación causal de una AR (1). En otras palabras, x t es un tipo especial de MA con un número infinito de términos remontándose en el tiempo. Esto se llama un orden infinito MA o MA (). Una orden finita MA es un orden infinito AR y cualquier orden finito AR es un orden infinito MA. Recordemos en la semana 1, observamos que un requisito para un AR estacionario (1) es que 1 lt1. Vamos a calcular el Var (x t) utilizando la representación causal. Este último paso utiliza un hecho básico sobre series geométricas que requiere (phi1lt1) de lo contrario la serie diverge. Navigation4.2 Modelos estacionarios lineales para series temporales donde la variable aleatoria se denomina innovación porque representa la parte de la variable observada que es impredecible dados los valores pasados. El modelo general (4.4) supone que es la salida de un filtro lineal que transforma las innovaciones pasadas, es decir, es un proceso lineal. Esta hipótesis de linealidad se basa en el teorema de la descomposición de Wolds (Wold 1938) que dice que cualquier proceso discreto de covarianza estacionaria puede expresarse como la suma de dos procesos no correlacionados, donde es puramente determinista y es un proceso puramente indeterminista que puede ser escrito como lineal Suma del proceso de innovación: donde está una secuencia de variables aleatorias seriadas no correlacionadas con media cero y varianza común. La condición es necesaria para la estacionariedad. La formulación (4.4) es una reparametrización finita de la representación infinita (4.5) - (4.6) con constante. Por lo general se escribe en términos del operador de retardo definido por, que da una expresión más corta: donde los polinomios del operador de lag y se llaman el polinomio y el polinomio, respectivamente. Para evitar la redundancia de parámetros, se supone que no hay factores comunes entre el y los componentes. A continuación, estudiaremos la trama de algunas series temporales generadas por modelos estacionarios con el objetivo de determinar los patrones principales de su evolución temporal. La figura 4.2 incluye dos series generadas a partir de los siguientes procesos estacionarios calculados por medio del cuantitativo genarma: Figura 4.2: Series temporales generadas por modelos Como era de esperar, ambas series temporales se mueven alrededor de un nivel constante sin cambios en la varianza debido a la propiedad estacionaria. Además, este nivel está próximo a la media teórica del proceso, y la distancia de cada punto a este valor es muy rara vez fuera de los límites. Además, la evolución de la serie muestra desviaciones locales de la media del proceso, que se conoce como el comportamiento de reversión media que caracteriza las series temporales estacionarias. Estudiemos con detalle las propiedades de los diferentes procesos, en particular, la función de autocovariancia que capta las propiedades dinámicas de un proceso estacionario estocástico. Esta función depende de las unidades de medida, por lo que la medida habitual del grado de linealidad entre las variables es el coeficiente de correlación. En el caso de procesos estacionarios, el coeficiente de autocorrelación a lag, denotado por, se define como la correlación entre y: Por lo tanto, la función de autocorrelación (ACF) es la función de autocovarianza normalizada por la varianza. Las propiedades de la ACF son: Dada la propiedad de simetría (4.10), la ACF suele estar representada por medio de un gráfico de barras en los retornos no negativos que se denomina correlograma simple. Otra herramienta útil para describir la dinámica de un proceso estacionario es la función de autocorrelación parcial (PACF). El coeficiente de autocorrelación parcial al retraso mide la asociación lineal entre y ajustado para los efectos de los valores intermedios. Por lo tanto, es sólo el coeficiente en el modelo de regresión lineal: Las propiedades de la PACF son equivalentes a las de la ACF (4.8) - (4.10) y es fácil demostrar que (Box y Jenkins 1976). Al igual que la ACF, la función de autocorrelación parcial no depende de las unidades de medida y se representa mediante un gráfico de barras en los retornos no negativos que se denomina correlograma parcial. Las propiedades dinámicas de cada modelo estacionario determinan una forma particular de los correlogramas. Además, se puede demostrar que, para cualquier proceso estacionario, ambas funciones, ACF y PACF, se acercan a cero, ya que el retraso tiende al infinito. Los modelos no son siempre procesos estacionarios, por lo que es necesario determinar primero las condiciones de estacionariedad. Hay subclases de modelos que tienen propiedades especiales por lo que los estudiaremos por separado. Así, cuando y, es un proceso de ruido blanco. Cuando, se trata de un proceso de orden de movimiento móvil puro. , Y cuando es un proceso autorregresivo puro de orden. . 4.2.1 Proceso de ruido blanco El modelo más simple es un proceso de ruido blanco, donde está una secuencia de variables de media cero no correlacionadas con varianza constante. Se denomina por. Este proceso es estacionario si su varianza es finita, dado que: verifica las condiciones (4.1) - (4.3). Por otra parte, no está correlacionada con el tiempo, por lo que su función de autocovariancia es: La Figura 4.7 muestra dos series temporales simuladas generadas a partir de procesos con media y parámetros cero y -0,7, respectivamente. El parámetro autorregresivo mide la persistencia de eventos pasados ​​en los valores actuales. Por ejemplo, si un choque positivo (o negativo) afecta positivamente (o negativamente) durante un período de tiempo que es más largo cuanto mayor sea el valor de. Cuando, la serie se mueve más aproximadamente alrededor de la media debido a la alternancia en la dirección del efecto de, es decir, un choque que afecta positivamente en el momento, tiene efectos negativos sobre, positivo en. El proceso es siempre invertible y está parado cuando el parámetro del modelo está limitado a estar en la región. Para probar la condición estacionaria, primero escribimos la forma media móvil mediante la sustitución recursiva de (4.14): Figura 4.8: Correlaciones de la población para los procesos Es decir, es una suma ponderada de las innovaciones pasadas. Los pesos dependen del valor del parámetro: cuando, (o), la influencia de una innovación dada aumenta (o disminuye) a través del tiempo. Tomando las expectativas de (4.15) para calcular la media del proceso, obtenemos: Dado que, el resultado es una suma de términos infinitos que converge para todo el valor de sólo si, en cuyo caso. Un problema similar aparece cuando calculamos el segundo momento. La prueba puede ser simplificada suponiendo que, es decir,. Entonces, la varianza es: Una vez más, la varianza va al infinito excepto para, en cuyo caso. Es fácil verificar que tanto la media como la varianza explotan cuando esa condición no se mantiene. Por tanto, la función de autocorrelación para el modelo estacionario es: Es decir, el correlograma muestra un decaimiento exponencial con valores positivos siempre si es positivo y con oscilaciones negativas positivas si es negativo (véase la figura 4.8). Además, la tasa de decaimiento disminuye a medida que aumenta, por lo que cuanto mayor sea el valor de la más fuerte la correlación dinámica en el proceso. Finalmente, hay un corte en la función de autocorrelación parcial en el primer retardo. Se puede demostrar que el proceso general (Box y Jenkins 1976): Es estacionario sólo si las raíces de la ecuación característica del polinomio están fuera del círculo unitario. La media de un modelo estacionario es. Es siempre invertible para cualquier valor de los parámetros. Su ACF va a cero exponencialmente cuando las raíces de son reales o con fluctuaciones de onda seno-coseno cuando son complejas. Su PACF tiene un corte en el retraso, es decir. Algunos ejemplos de Correlogramas para modelos más complejos, como el, se puede ver en la figura 4.9. Son muy similares a los patrones cuando los procesos tienen raíces reales, pero toman una forma muy diferente cuando las raíces son complejas (ver el primer par de gráficos de la figura 4.9). 4.2.4 Modelo de media móvil autorregresiva El modelo de orden móvil autorregresivo general (de orden finito) de órdenes, es: (1) Serie de tiempo fijo: Matriz de covarianza de Toeplitz. 11 (1-1.2B.32B 2) raíces: 1 / .8, 1 / .4 Y t - 1.2 (Yt-1 -) -20 (Yt-2 -) et (1-1.2B.2B2 (Y t -) et (1-0.2B) (1-B) (1-0.2B) (Y t - Y t-1) et Raíz unitaria, no estacionaria, sin reversión media. Las pruebas de raíz unitaria studentized (no estándar) se extienden a un orden más alto. (1) / (1,2) WTC (1) / (1,2) CRASH) gráfico p2 q1 f lead0 outout1 iddate donde 01jan01d t Lag Variable MU t Variable de retraso MU 1895175.1 241956.3 7.83 16 Interpretación: X t Indicador WTC Similarmente para X t segundo indicador de fallo El término de error es ARMA (2,1) Comprobaciones Residuales Autocorrelación Comprobación de Residuos a Chi - Pr Lag DF ChiSq Autocorrelaciones Lag Cuadrado DF ChiSq - ------- Autocorrelaciones -------------- 6 11.07 3 0.0114 -0.002 -0.008 0.016 0.060 0.059 -0.121 12 13.69 9 0.1336 0.032 -0.019 -0.042 -0.030 -0.034 -0.002 18 20,49 15 0,1541 -0,082 -0,017 0,005 0,013 -0,074 0,023 24 37,27 21 0,0157 0,116 0,088 -0,087 -0,036 0,045 0,011 30 43,28 27 0,0245 -0,046 -0,016 0,059 -0,041 0,061 0,008 36 51,68 33 0,0203 0,069 0,013 -0,042 0,085 0,032 0,029 42 55,44 39 0,0425 -0,045 0,020 0,066 -0,002 -0,011 -0,002 48 56,92 45 0,1096 0,020 -0,011 -0,009 0,002 -0,005 0,046 21 Procedimiento de ARIMA Estimación de mínimos cuadrados condicionales Parámetro de aproximación estándar Parámetro Error de estimación t Valor Pr t Lag Variable MU Lag Cuadrado DF ChiSq Autocorrelaciones t Lag Variable MU 126,01962 0,59155 2 t Lag Variable MU 126,01962 0,59155 213,03 Lag Square DF ChiSq ------------- Autocorrelaciones ------------- 6 4,81 5 0,4399 -0,040 0,043 -0,064 0,054 -0,197 -0,034 12 14,37 11 0,2134 0,056 -0,089 -0,090 0,215 -0,023 -0,167 18 18,06 17 0,3850 -0,044 0,079 0,033 -0,060 0,129 -0,063 24 21,22 23 0,5679 -0,054 0,031 0,016 -0,123 -0,036 - 0.075 t Lag Variable MU 126.01962 0.59155 2 titleEl procedimiento de ARIMA Estimación de los mínimos cuadrados condicionales Estándar Parámetro aproximado Estimación Error t Valor Pr t Lag Variable MU 126.01962 0.59155 2 22 Utilizando NLIN para estimar el punto de inicio de la rampa datos de procnlin C1960 a126 b-.2 X Año-C) (año c) ruptura del modelo a ejecutar bX NOTA: Criterio de convergencia cumplido. Suma de la media Aprox Fuente DF Cuadrados Cuadrado F Valor Pr F Modelo Error Corregido Total Aprox Aproximado 95 Confianza Parámetro Estimación Std Error Límites C a b c) ruptura del modelo a bX ejecución NOTA: c) ruptura del modelo bX ejecución NOTA: Criterio de convergencia cumplido. Suma de la media Aprox Fuente DF Cuadrados Cuadrado F Valor Pr F Modelo 2 403,5 201,7 6,35 0,0027 Error 85 2702,1 31,7894 Total corregido 87 3105,6 Approx aproximado 95 Confianza Parámetro Estimación Std Error Límites C 1967,6 10,7354 1946,2 1988,9 a 126,0 0,7895 124,4 127,6 b -0,1873 0,0868 - 0.3599 -0.0147 c) ruptura del modelo a ejecutar bX NOTA: title Utilización de NLIN para estimar el punto de inicio de la rampa proc nlin datos todos los parámetros C1960 a126 b-.2 X (año-C)

Comments